Monthly Archives: June 2017

Magic Robot, This Robot is Inspired by Vine Can Grow According to Desired Requests

Robots that mimic ivy vines can grow thousands of times their original lengths at speeds faster than the average person can run, a new study finds.

The new soft, flexible robots could one day be used in tight situations, such as to slither through rubble or snake inside the human body, the scientists said.

Previously, scientists have designed robots that copy the way animals and other organisms move, ranging from jointed legs and flapping wings to slithering bodies and undulating tails. [The 6 Strangest Robots Ever Created]

Besides locomotion — the ability to move from one place to another — cells and organisms can navigate their environments through growth. For example, neurons branch outward to incorporate themselves into limbs, and roots grow downward into the soil to absorb water and nutrients.

Study lead author Elliot Hawkes, a roboticist at the University of California, Santa Barbara, was inspired to develop a robot that growsafter “watching an English ivy plant, over the course of months, grow around the corner of my bookshelf seeking the sunlight and thinking that in a certain, very slow way, it was going somewhere,” he said.

Some advantages of growth over locomotion include the ability to maneuver through narrow spaces and to form potentially useful 3D structures. Until now, however, robots that grow could extend only about one to five times their body length and at speeds of up to about 23.6 inches (60 centimeters) per hour.

Now, Hawkes and his colleagues have developed a robot that can grow thousands of times its body length at speeds of up to 22 mph (35.4 km/h). In comparison, the average man can run about 15 mph (24 km/h) for short periods, and the fastest man in the world, Usain Bolt, can run at up to about 28 mph (45 km/h), according to the National Council on Strength and Fitness.

The newly developed robot is made of soft, flexible polyethylene, the most common plastic in the world. It grows from its tip via internal air pressure, which pushes plastic tubing stored at its base up through the core of its body. The robot is initially about 11 inches (28 cm) long, but can rapidly reach a maximum length of about 236 feet (72 meters), according to the researchers.

“The body doesn’t move as the tip extends,” Hawkes told Live Science. “That is, you could hold the body of the robot tightly in your hands, and the tip would keep growing.”

The inside of the robot is divided into several separate chambers, typically with one on either side of the body. To make the robot steer left or right, the scientists inflate one side more than the other.

The robot is equipped with a camera on its tip, so it can sense light. The camera transmits data to the base of the robot via a cable running through the robot’s body. For their study, the scientists had the robot use data from its camera to help it grow toward light, much like a plant would. The camera can also send full-color video to an operator to help them steer the robot, Hawkes said. [Super-Intelligent Machines: 7 Robotic Futures]

In experiments, the robots could grow through narrow gaps and over surfaces covered in glue or nails — the robots did not lose much air pressure when punctured, as the nails partially plugged their own holes, the scientists said. The robots could also pull cables, spray water mist to douse fires, and form 3D structures such as hooks that could be used to turn valves.

In one experiment, one of the robots could apply enough force to lift a 154-pound (70 kilograms) crate, Hawkes said. “We were surprised by how such a simple device could result in such robust movement through challenging environments,” he added. “It is nearly impossible to stop it from lengthening.”

One potential application for these robots is in search-and-rescue operations, “where the robots could grow through rubble and debris, potentially searching for survivors,” Hawkes said. “Unlike small-animal-inspired search-and-rescue robots, the body of the growing robot could act as a conduit to pass oxygen or water to the trapped survivor.

“In a related application, we imagine firefighters growing the robots to the base of a fire to deliver water, as opposed to having to spray from a distance or risk a firefighter’s life to get close to the blaze,” Hawkes said.

These robots could also find use in minimally invasive surgery. “We have successfully made robot bodies down to 1.8 millimeters [0.07 inches] diameter and are currently working with neurosurgeons,” Hawkes said.

Hawkes cautioned that their work “isn’t ready yet to fight a fire or perform a brain surgery tomorrow. But we hope it can lead to mature technologies that can make a difference in the world.”

The robot currently is handmade. “We hope to automate manufacture of the robots so that dozens of them could cost almost nothing and be used in a search-and-rescue scenario,” Hawkes said. “We are also exploring new, more robust materials for the body, such as rip-stop nylon and Kevlar. We also want to continue development of surgical applications, hopefully moving to in vivo testing [experiments in live animals] in the near future.”

Computerized Fabrication Can Change Clothing Into Fitness Tracker

Counting your steps used to be an activity restricted to OCD sufferers, but with the advent of smart phones and fitness trackers, it’s easy to keep track of precisely how many strides you take in a week, or a day, or an hour.

New technology out of Harvard promises to make this kind of tracking even more accurate and ubiquitous. A team of researchers at Harvard’s Wyss Institute for Biologically Inspired Engineering have developed a stretchy fabric-based sensor that can detect and transmit data on a wide range of human movement. The highly sensitive capacitor technology could be incorporated into the next generation of smart apparel, in which your clothing doubles as a digital device.

Put another way: Your shirt could be your next computer.

Working with colleagues at Harvard’s School of Engineering and Applied Sciences, the research team set out to find a replacement for the hard and inflexible materials used in most wearable computing systems today — think fitness bands, clip-on pedometers, etc. By incorporating computing elements into the fabric itself, the researchers hope to kick start a whole new class of light, flexible, and truly wearable computing systems.

The Harvard technology consists of a thin sheet of silicone sandwiched between two layers of conductive fabric, creating what’s known as a capacitive sensor. This kind of sensor can track even the slightest movement by constantly monitoring tiny electrical charges as they travel through the material.

“When we apply strain by pulling on the sensor from the ends, the silicone layer gets thinner and the conductive fabric layers get closer together, which changes the capacitance of the sensor in a way that’s proportional to the amount of strain applied,” said co-author Daniel Vogt, in a statement announcing the new research. “We can measure how much the sensor is changing shape.”

The material is sensitive enough to register physical strain of less than half a millimeter. According to testing on a pair of gloves made from the material, that level of sensitivity is good enough to measure fine motor movements like slightly moving one finger side-to-side. But the material is so light and flexible that such movements are entirely unimpeded.

The new process is also easy to set up and duplicate, making it immediately useful for manufacturers of smart apparel and other wearables.

“We have designed a unique batch-manufacturing process that allows us to create custom-shaped sensors that share uniform properties, making it possible to quickly fabricate them for a given application,” said researcher Asli Atalay in an email.

The National Science Foundation, the Scientific and Technological Research Council of Turkey, and the US Department of Defense provided research support.

The paper, published in the journal Advanced Materials Technologies, is only a preliminary proof-of-concept study, but the research team is optimistic that the textile technology could be used for motion capture applications — athletic clothing that tracks physical performance or soft clinical devices to monitor patients in a medical setting.

“This work shows promising results for human motion monitoring in sports, for performance optimization, or training purposes,” Atalay said. “For example, a golfer who wears sensor integrated clothing can train himself on correct posture, or an athlete can optimize his performance by learning from sensor feedback.”

Another possibility: By combining the sensor material with fabric-based soft actuators, engineers could develop robotic systems that truly mimic apparel. In other words, instead of simply tracking movement, the material itself could assist or even initiate specific movements, leading to soft exoskeleton systems for physical labor or disabled patients.

“There is a growing interest in utilizing textile technology in soft robotic systems,” Atalay said. “For example, the Wyss Institute develops fabric-based assistive robots to help people with physical impairments such as spinal cord injury or ALS. Another example is monitoring breath rate with sensors integrated into garments to prevent sleep apnea.

Will the High Textured Tail Help Phelps Beat the Great White Shark?

Michael Phelps is going to race a great white shark, and marine biologists are betting on the shark. The ultimate reason boils down to physics.

To get a leg (or tail) up during Discovery Channel’s “Shark Week” episode, Phelps will wear a custom-made mechanical fin on his feet that mimic’s a great white’s tail.

This so-called monofin, made by Lunocet, displaces water more efficiently than human feet do, and it should add several miles per hour to Phelps’ speed, according to the company. [See Photos of Great White Sharks Breaching the Water’s Surface]

When the great white shark swims, it uses its crescent moon-shaped tail, which is buttressed by a caudal keel, to push it forward, fast, according to experts on the Discovery Channel’s “Shark Week” episode.

Brooke Flammang, assistant professor of biological sciences at the New Jersey Institute of Technology, told Live Science via email that any aquatic animal that has a tail will move it back and forth to generate thrust — fish vertically and whales horizontally. As the tail gets to the end of the stroke, it changes direction. That change in direction generates a vortex, pushing water behind and generating thrust, or a forward force.

In a 2011 study of shark locomotion (using dogfish), Flammang found that sharks can go faster because they stiffen their tails in the middle of each stroke. She said the shark’s tail creates a vortex when it is as far as it can go on one side as the shark begins its stroke. It releases another vortex in the middle of the stroke, and a third one when the next stroke begins on the other side. “The middle one is the oddball one that happens because of the stiffness change,” she said. “The extra vortex gives a shark extra thrust that other fish don’t have.”

Those vortices also give more lift to their pectoral fins so the sharks can keep swimming. Great whites are among the species of shark that must keep moving forward in order to keep oxygen-rich water flowing over their gills. (This is not true of many shark species, such as nurse sharks).

The monofin is supposed to mimic the tail motion of a dolphin or shark. According to the company it works primarily by producing “lift forces,” like an airplane wing, and it will generate vortices as well — though nowhere near as efficiently as a shark does.

How close can one of the most decorated athletes get to a shark? Phelps set a world record for the 100 meter butterfly in Rome in 2009, and he was going at 4.47 mph (7.19 km/h) for a still-record time of 49.82 seconds. Phelps has told various news outlets he can reach speeds of 5 to 5.5 mph (about 8 to 9 km/h). (He will be racing the shark over a distance of 328 feet, or 100 meters).

The Lunocet monofin can reportedly help a swimmer reach up to 8 mph (12.8 km/h). A great white shark will reach speeds of 25 mph (40 km/h) in short bursts, according to the ReefQuest Center for Shark Research.

Phelps won’t be able to match the speed of a great white, even with his mechanical fin. The problem is that aquatic animals can also smoothly undulate their entire bodies. This is true of fish, whales, and even seals and otters.

“Part of what makes truly aquatic animals so efficient is the precise timing of their body undulation with the tail changing direction,” Flammang said. That undulation means water passes steadily down the body, making a vortex when it reaches the tail. Phelps, being human, can’t do that. “Since legs only bend in a couple of places, he won’t have a smooth undulation and will lose a lot of power to drag.”

The Shark Week show “Phelps Vs. Shark: Great Gold Vs. Great White” will air on tonight (July 23), at 8 p.m. ET.

Company Offers Free Microchipping for Workers

Free spin classes, extra vacation days, nap rooms, egg-freezing … cyborg implants?

While tech companies compete to provide the most luxurious perks to lure employees, one company is heading into sci-fi territory by offering its employees “free microchipping” – totally optional, company representatives said. The company, Three Square Market (32M), will provide the microchipping service, which normally costs $300, on Aug. 1,according to a statement.

The cyborg implant will allow employees the opportunity to log in to computers, open doors and use the copy machine without having to rely on analog alternatives like fingers and brains to accomplish those tasks.

The company expects about 50 employees to be chipped, according to the statement. While the program is voluntary, the company was apparently inspired by a European company, BioHax International, and sees microchipping its employees as a way to lead by example — the company anticipates such chips will fuel micropayments in the future and help its mobile-checkout technology grow, according to the statement.

“We foresee the use of RFID technology to drive everything from making purchases in our office break room market, opening doors, use of copy machines, logging into our office computers, unlocking phones, sharing business cards, storing medical/health information, and used as payment at other RFID terminals.  Eventually, this technology will become standardized allowing you to use this as your passport, public transit, all purchasing opportunities, etc.,” Todd Westby, 32M’s CEO, said in the statement.

The microchips rely on the same radio frequency identification (RFID) technology used to track goods in a supply chain, find lost dogs and cats and clock people’s times in marathons. The chips will be inserted below the skin in the space between the thumb and the index finger, according to the company.

Employees will be chipped at the totally normal, not-in-any-way dystopian, inaugural “chip party” at 32M’s headquarters in River Falls, Wisconsin, according to the statement.